70 research outputs found

    Synthesising Graphical Theories

    Full text link
    In recent years, diagrammatic languages have been shown to be a powerful and expressive tool for reasoning about physical, logical, and semantic processes represented as morphisms in a monoidal category. In particular, categorical quantum mechanics, or "Quantum Picturalism", aims to turn concrete features of quantum theory into abstract structural properties, expressed in the form of diagrammatic identities. One way we search for these properties is to start with a concrete model (e.g. a set of linear maps or finite relations) and start composing generators into diagrams and looking for graphical identities. Naively, we could automate this procedure by enumerating all diagrams up to a given size and check for equalities, but this is intractable in practice because it produces far too many equations. Luckily, many of these identities are not primitive, but rather derivable from simpler ones. In 2010, Johansson, Dixon, and Bundy developed a technique called conjecture synthesis for automatically generating conjectured term equations to feed into an inductive theorem prover. In this extended abstract, we adapt this technique to diagrammatic theories, expressed as graph rewrite systems, and demonstrate its application by synthesising a graphical theory for studying entangled quantum states.Comment: 10 pages, 22 figures. Shortened and one theorem adde

    ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity

    Get PDF
    We present a new graphical calculus that is sound and complete for a universal family of quantum circuits, which can be seen as the natural string-diagrammatic extension of the approximately (real-valued) universal family of Hadamard+CCZ circuits. The diagrammatic language is generated by two kinds of nodes: the so-called 'spider' associated with the computational basis, as well as a new arity-N generalisation of the Hadamard gate, which satisfies a variation of the spider fusion law. Unlike previous graphical calculi, this admits compact encodings of non-linear classical functions. For example, the AND gate can be depicted as a diagram of just 2 generators, compared to ~25 in the ZX-calculus. Consequently, N-controlled gates, hypergraph states, Hadamard+Toffoli circuits, and diagonal circuits at arbitrary levels of the Clifford hierarchy also enjoy encodings with low constant overhead. This suggests that this calculus will be significantly more convenient for reasoning about the interplay between classical non-linear behaviour (e.g. in an oracle) and purely quantum operations. After presenting the calculus, we will prove it is sound and complete for universal quantum computation by demonstrating the reduction of any diagram to an easily describable normal form.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    Tensors, !-graphs, and non-commutative quantum structures

    Full text link
    Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use of structures that have both an algebraic and co-algebraic component, making them well-suited for manipulation using diagrammatic techniques. Diagrams allow us to easily form complex compositions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest challenges in going beyond simple rewriting-based proofs is designing a graphical language that is expressive enough to prove interesting properties (e.g. normal form results) about not just single diagrams, but entire families of diagrams. One candidate is the language of !-graphs, which consist of graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of times. New !-graph equations can then be proved using a powerful technique called !-box induction. However, previously this technique only applied to commutative (or cocommutative) algebraic structures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In this paper, we fix this shortcoming by offering a new semantics for non-commutative !-graphs using an enriched version of Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Open Graphs and Monoidal Theories

    Full text link
    String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. The distinguishing feature of these diagrams is that edges need not be connected to vertices at both ends, and these unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper, we give a concrete construction for string diagrams using a special kind of typed graph called an open-graph. While the category of open-graphs is not itself adhesive, we introduce the notion of a selective adhesive functor, and show that such a functor embeds the category of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the category of open-graphs inherits "enough adhesivity" from the category of typed graphs to perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it ensures rewrite systems are "type-safe" in the sense that rewriting respects the inputs and outputs. This formalism lets us safely encode the interesting structure of a computational model, such as evaluation dynamics, with succinct, explicit rewrite rules, while the graphical representation absorbs many of the tedious details. Although topological formalisms exist for string diagrams, our construction is discreet, finitary, and enjoys decidable algorithms for composition and rewriting. We also show how open-graphs can be parametrised by graphical signatures, similar to the monoidal signatures of Joyal and Street, which define types for vertices in the diagrammatic language and constraints on how they can be connected. Using typed open-graphs, we can construct free symmetric monoidal categories, PROPs, and more general monoidal theories. Thus open-graphs give us a handle for mechanised reasoning in monoidal categories.Comment: 31 pages, currently technical report, submitted to MSCS, waiting review

    A first-order logic for string diagrams

    Get PDF
    Equational reasoning with string diagrams provides an intuitive means of proving equations between morphisms in a symmetric monoidal category. This can be extended to proofs of infinite families of equations using a simple graphical syntax called !-box notation. While this does greatly increase the proving power of string diagrams, previous attempts to go beyond equational reasoning have been largely ad hoc, owing to the lack of a suitable logical framework for diagrammatic proofs involving !-boxes. In this paper, we extend equational reasoning with !-boxes to a fully-fledged first order logic called with conjunction, implication, and universal quantification over !-boxes. This logic, called !L, is then rich enough to properly formalise an induction principle for !-boxes. We then build a standard model for !L and give an example proof of a theorem for non-commutative bialgebras using !L, which is unobtainable by equational reasoning alone.Comment: 15 pages + appendi

    !-Graphs with Trivial Overlap are Context-Free

    Full text link
    String diagrams are a powerful tool for reasoning about composite structures in symmetric monoidal categories. By representing string diagrams as graphs, equational reasoning can be done automatically by double-pushout rewriting. !-graphs give us the means of expressing and proving properties about whole families of these graphs simultaneously. While !-graphs provide elegant proofs of surprisingly powerful theorems, little is known about the formal properties of the graph languages they define. This paper takes the first step in characterising these languages by showing that an important subclass of !-graphs--those whose repeated structures only overlap trivially--can be encoded using a (context-free) vertex replacement grammar.Comment: In Proceedings GaM 2015, arXiv:1504.0244
    • …
    corecore